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Abstract

A measurement on a quantum system is said to cause the “collapse”
of the quantum state vector or density matrix. An analogous collapse
occurs with measurements on a classical stochastic process. This paper
addresses the question of describing the response of a classical stochastic
process when there is feedback from the output of a measurement to the
input, and is intended to give a simplified model for quantum-mechanical
processes that occur along a space-like reaction coordinate. The classical
system can be thought of in physical terms as two counterflowing prob-
ability streams, which stochastically exchange probability currents in a
way that the net probability current, and hence the overall probability,
suitably interpreted, is conserved. The proposed formalism extends the
mathematics of those stochastic processes describable with linear, single-
step, unidirectional transition probabilities, known as Markov chains and
stochastic matrices. It is shown that a certain rearrangement and com-
bination of the input and output of two stochastic matrices of the same
order yields another matrix of the same type. Each measurement causes
the partial collapse of the probability current distribution in the midst of
such a process, giving rise to calculable, but non-Markov, values for the
ensuing modification of the system’s output probability distribution. The
paper concludes with an analysis of a simple classical probabilistic version
of a so-called grandfather paradox.

1 Introduction

In a previous paper [1], the author proposed a formalism for describing the
evolution of a Schrödinger wave function for a single particle along a spacelike
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reaction coordinate, where the time was taken as one of the transverse coor-
dinates. The principal objective of that study was to establish a version of
one-body nonrelativistic quantum mechanics in which the time plays a natural
role as an operator/observable. The present work is a preliminary attempt to
address another aspect of the formalism in [1] (mentioned in Sec. 4 therein), that
is, is there a self-consistent theory of measurement in a quantum mechanics in
which there is feedback from the outcome of a measurement to the input to the
measurement? This problem does not occur in conventional quantum mechan-
ics when the time is the coordinate of evolution (but see [2] for an extension of
quantum mechanics that can describe physical processes with feedback in the
time dimension). The present study is preliminary in that we shall propose, and
analyze the consistency of, only a classical analog to such a quantum system
and of certain measurements upon it.

We can represent a physical system by a point moving in a transverse space,
such that the point’s transverse position is a function (which is, in general,
multi-valued) that is parametrized by a spacelike coordinate of evolution, and
such that both forward and backward motion along the evolution coordinate
are possible physically and are distinguished mathematically. We divide the
transverse space, which can include the time direction, by a fine-grained mesh
into a large number of boxes, nF of which are associated with forward motion,
and nB with backward motion. In turn, the elements of the former are grouped
into subsets called coarse-grained boxes, and similarly for the latter. The sys-
tem point can jump from any one box to another, including to/from forward
from/to backward motion, in one of a sequence of lumped zones of interaction.
We shall not attempt to give concrete realizations to the physics of these zones,
but merely presume a given set of transition probabilities associated with each
zone. A second type of zone will represent measurements: We assume that mea-
surement zones do not give rise to forward↔backward transitions, but merely
distinguish an incoming signal according to which of the coarse-grained boxes
detected the trajectory’s transit in each instance that the system point passes
through such a zone.

Classical mechanics, probability theory and the associated stochastic pro-
cesses have simplifying advantages over quantum systems: (i) there are no in-
terference phenomena in combining sub-processes, (ii) closed channels—domains
inaccessible to classical mechanical systems—do not carry probability currents,
and (iii) a measurement of the first kind (in Pauli’s sense, [3], p. 75) affects a
probability distribution for a single system, but, insofar as we sum over all pos-
sible measurement outcomes, does not affect the distribution for an ensemble of
systems. There are many textbooks on the subject of probability and stochastic
processes, e.g. [4], [5], [6], [7], [8], and specifically on Markov processes, e.g. [9]
Ch. XV, [10], [11], [12] Ch. 7, [13], [14] Ch. 6.

We shall keep to the analysis of state spaces that are discrete, and adhere
to the nomenclature recommended in [6], p. 188, Table 6.1: the entities to be
studied will be called Markov chains; Markov processes deal with continuous
state spaces, as in Brownian motion. Markov chains can be associated with
either a discrete or a continuous evolution parameter, which is usually—but
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herein not necessarily—understood to be the time. This paper will deal only
with chains with a discrete evolution coordinate, and with a finite state space.

An n × n matrix A, with exclusively nonnegative real entries Ajk, is called
stochastic, if its column sums are all equal to 1, that is

n∑
j=1

Ajk = 1, for k = 1, 2, . . . , n. (1)

This notation is the transpose of that often used in mathematical texts, (see, for
example, [14], Ch. 6.1), and is adopted in order to facilitate the eventual com-
parision to formulas in quantum mechanics. In fact, let U be an n-component
column (“state”) vector with nonnegative components Uk, and let the compo-
nents of the n-vector V be

Vj =
n∑

k=1

AjkUk; (2)

then if also
n∑

k=1

Uk = 1, (3)

the property (1) entails
n∑

j=1

Vj = 1. (4)

A stochastic matrix as A is often called a matrix of transition probabilities.
The product of two stochastic matrices of the same order is also stochastic

([14], Ch. VI, Th. 1.1(d)). The present work is based on a result derived below:
there is another way to combine two stochastic matrices, which depends on a
kind of rearrangement of what constitutes input and what output, and that also
yields a stochastic matrix, provided that the combining process converges.

The remainder of this paper is organized as follows. In section 2, we shall
define, and exhibit some properties of, a nonconventional synthesis of stochastic
matrices that yields another stochastic matrix. These results will be shown to
describe what will be called “bidirectional Markov chains” in that both input
and output to the process will occur at both ends of an interval in a coordinate
describing the evolution of a stochastic process. In section 3, we shall study the
effect of a sequence of “coarse-grained” intermediate measurements of the first
kind on the predicted output of such a system; the transition matrix for such
a measurement depends on the input, and hence the measurement process is a
nonlinear, i.e., non-Markovian, mapping of input into output. Section 4 com-
pletes the paper with a comparision of conditional probabilities with the collapse
of a probability distribution, and analyzes a classical-probabilistic version of a
grandfather paradox.
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2 Bidirectional Markov chains

In this section we shall deconstruct stochastic matrices of the same order in a
parallel manner and fashion a synthesis of such matrices in a way that yields
another stochastic matrix that is not the matrix product of its ingredient ma-
trices.

Let A be as in (1), and let nF , nB be an integer partition of n:

nF + nB = n. (5)

The integer nF will be the number of forward- (F)-propagating components,
or channels, of the probability state vector, while nB will be the number of
backward- (B)-propagating channels. Accordingly, we can partition A as

A =
[
(AFF )αβ (AFB)αb

(ABF )aβ (ABB)ab

]
, (6)

where the subscripts stand for a complete array of sub-matrix elements, with
α, β = 1, 2, . . . , nF and a, b = 1, 2, . . . , nB . Consistent with (2), the causal order
in the superscripts on the sub-blocks of A are to be read from right to left;
similarly, the input to output channels are ordered from right to left in the
subscripts.

Let us introduce two more n× n stochastic matrices C and M , partitioned
as A, with C as well as A nonspecial; the M stands for “measurement”. For
the purposes of this section, the matrix M is presumed to be a fixed stochastic
matrix

M =
[
(MFF )αβ 0

0 (MBB)ab

]
, (7)

where MFF and MBB are nonspecial nF × nF and nB × nB stochastic ma-
trices, respectively. The zeroes for the off-diagonal blocks of M correspond to
the physical assumption that a measurement process gives rise to no F ↔ B
transitions.

ABF

↓

← ABB

↑
AFB

AFF →

�

-

UB

UF

←MBB

MFF →-

� XB

XF

�

-

Y B

Y F

CBF

↓

← CBB

↑
CFB

CFF →

�

-

V B

V F

Figure 1. Probability flows and transitions.

4



Figure 1 shows the hookups of the channels carrying probability: UF , XF ,
Y F and V F are the vectors of forward-flowing probability, with nF channels
each, as in (UF )α, α = 1, 2, . . . , nF ; V B , Y B , XB and UB are the vectors
of backward-flowing probability, with nB components each, as in (V B)a, a =
1, 2, . . . , nB . The vectors UF and V B are the prescribed input, while V F and
UB comprise the overall output. The arrows within the boxes A, M , and C
represent the action of the sub-matrices in diverting and mixing the flow of
probability current vectors.

There is a feedback loop given by the causal sequence XF , MFF , Y F , CBF ,
Y B , MBB , XB , and AFB . In what follows, we shall consider the time to be one
of the transverse directions: Although conventional physical systems can be in
only one spatial position at a given time, such systems can be at more than one
time in a given spatial position; therefore, we must consider the circumstance
that the system passes through the feedback loop either zero, or one, or two,
etc., times before exiting.

We define IFF and IBB to be the nF × nF and nB × nB unit matrices,
respectively. Also, let R̄F and R̄B be single-rowed matrices with nF and nB

columns, respectively, all entries being 1 in both matrices, e.g.,

(R̄F )α = 1, for α = 1, 2, . . . , nF . (8)

Then, since A, M , and C are stochastic matrices, we have

R̄F AFF + R̄BABF = R̄F , (9a)

R̄F AFB + R̄BABB = R̄B , (9b)

R̄F MFF = R̄F , (9c)

R̄BMBB = R̄B , (9d)

R̄F CFF + R̄BCBF = R̄F , (9e)

R̄F CFB + R̄BCBB = R̄B . (9f)

The “equations of motion” of the system in Fig. 1 are as follows:

XF = AFF UF + AFBXB , (10a)

UB = ABF UF + ABBXB , (10b)

Y F = MFF XF , (10c)

XB = MBBY B , (10d)

V F = CFF Y F + CFBV B , (10e)

Y B = CBF Y F + CBBV B . (10f)

Let us check first that overall probability current is conserved in the transition
from input to output. We apply (9a) and (9b) to the sums-over-channels of
corresponding sides of (10a) and (10b), and apply similarly (9c) to (10c), (9d)
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to (10d), and (9e) and (9f) to the sum of (10e) and (10f), thereby obtaining

R̄F XF + R̄BUB = R̄F UF + R̄BXB ,

R̄F Y F = R̄F XF ,

R̄BXB = R̄BY B ,

R̄F V F + R̄BY B = R̄F Y F + R̄BV B .

Therefore, the apparatuses A, M , and C conserve probability current, so that
we have the combined result

R̄F V F + R̄BUB = R̄F UF + R̄BV B . (12)

We also need to prove that, whenever the components of the input vectors
UF and V B are nonnegative, the components of the output vectors V F and UB

are likewise nonnegative. It is convenient to obtain this result from an explicit
form for the matrix mapping input into output. We can use (10c) and (10d)
to eliminate Y F and XB from (10a), (10b), (10e), (10f), then use the first and
fourth of the latter set to obtain XF and Y B in terms of UF and V B , and then
use the second and third to obtain V F and UB in terms of UF and V B . We
first define the auxiliary matrices LFF and LBB , where L stands for “loop”:

LFF =
[
IFF −AFBMBBCBF MFF

]−1
, (13a)

LBB =
[
IBB − CBF MFF AFBMBB

]−1
. (13b)

The product matrices AFBMBBCBF MFF and CBF MFF AFBMBB are as-
sumed to be sufficiently close to the nF × nF and nB × nB zero matrices,
respectively, so that the inverses in (13) exist. Then we have

XF = LFF
[
AFF UF + AFBMBBCBBV B

]
, (14a)

Y B = LBB
[
CBF MFF AFF UF + CBBV B

]
. (14b)

We now represent the complete mapping of input into output by an n×n matrix
S, such that [

V F

UB

]
=

[
SFF SFB

SBF SBB

] [
UF

V B

]
. (15)

Then (10) and (14) entail

SFF = CFF MFF LFF AFF , (16a)

SFB = CFF MFF LFF AFBMBBCBB + CFB , (16b)

SBF = ABF + ABBMBBLBBCBF MFF AFF , (16c)

SBB = ABBMBBLBBCBB . (16d)
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Given convergence, (13a) and (13b) can be represented in infinite series
expansions

LFF = IFF +
∞∑

m=1

(
AFBMBBCBF MFF

)m
, (17a)

LBB = IBB +
∞∑

m=1

(
CBF MFF AFBMBB

)m
. (17b)

Each summand in these series consists of products of matrices with nonnegative
elements, so that all the elements of both LFF and LBB are nonnegative. In
turn, we infer from (16) that all the elements of the matrix S are nonnegative,
and (12) implies that the column sums of S are all +1; hence, S is a stochastic
matrix mapping overall input into overall output. We have thereby achieved
the principal goal of this section.

We remark further on the convergence of the sums for LFF and LBB . These
sums represent the complete feedback loop taken at the entry points at the
beginning of XF , and at the beginning of Y B , respectively, in Fig. 1. Both
A and C have n(n − 1) free parameters, subject to the inequalities that each
element is nonnegative and less than 1. If one or both off-diagonal blocks AFB

and CBF have all elements sufficiently small the sum in (17) will converge: In
fact, suppose that (

CBF MFF AFBMBB
)
ab

= εDab, (18)

where 0 ≤ ε < 1, and where

nB∑
a=1

Dab ≤ 1, for b = 1, 2, . . . , nB . (19)

Then we have

nB∑
a=1

(
D2)ab =

nB∑
a,c=1

DacDcb ≤
nB∑
c=1

Dcb ≤ 1. (20)

Similarly, the column sums of
(
Dr)ab, and therefore the individual elements

of Dr, are majorized by 1. Hence each element in the matrix sum in (17b)
converges. Since we have(

AFBMBBCBF MFF
)m

= AFBMBB
(
CBF MFF AFBMBB

)m−1
CBF MFF , m = 2, 3, . . . (21)

the sum in (17a) also converges. It can be arranged that divergence occurs
as the upper bound ε approaches 1. Since no element of D can exceed 1, the
set of matrices A and C that give rise to a divergent sum will be of lower
dimensionality, a kind of boundary set within the set of all possible stochastic
matrices A and C. There is no full 2n(n− 1)-dimensional domain of stochastic
matrices A and C that yields divergent feedback processes.
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3 Intermediate measurements

In this section, we shall partition both the nF F-type and the nB B-type channels
into coarse-grained subsets, and presume that at each crossing of the system
point through the device M , a measurement is made of which coarse grain the
system traversed. We shall also presume, analogous to the quantum-mechanical
postulate of Lüders ([15] Eq. (7)—see also [16], Eq. (43), et seq., and [17],
Eq. (2)), that within a coarse grain the measurement process does not change
the relative strengths of the probability currents in the constituent fine-grained
channels. The latter assumption entails a nonlinearity in the stochastic process,
at least for individual trials—see the analysis below. As in Sec. 4, the above
model for the effect of a coarse-grained measurement is straightforwardly related
to the usual constructs for conditional probabilities. Note that we are assuming
a measurement to be of the first kind ([3], p. 75), that is, a second measurement
of the coarse-grained structure of the current vector following the first would
yield the same result as the first—the measurement has no dynamical effect on
the system but only determines the coarse-grained state of the system.

Let {nF
1 , nF

2 , . . . , nF
νF } and {nB

1 , nB
2 , . . . , nB

νB} be ordered sequences of posi-
tive integers partitioning nF and nB , respectively, with partial sums

pF
ν =

{
0, if ν = 0,∑ν

ν′=1 nF
ν′ , if ν = 1, 2, . . . , νF ,

(22a)

pB
ν =

{
0, if ν = 0,∑ν

ν′=1 nB
ν′ , for ν = 1, 2, . . . , νB .

(22b)

We also define the projection matrices

(
IFF
ν

)
αβ

=

{
δαβ , α, β = pF

ν−1 + 1, . . . , pF
ν , for each ν = 1, . . . , νF ,

0, otherwise,
(23a)

(
IBB
ν

)
ab

=

{
δab, a, b = pB

ν−1 + 1, . . . , pB
ν , for each ν = 1, . . . , νB ,

0, otherwise.
(23b)

It is also convenient to define certain probabilities that are associated with the
circumstance that an input current to an apparatus is presumed, or known after
the fact, to be diverted into a particular subset of the set of output channels. In
fact, let Ω be the matrix associated with an apparatus such as A, M , or C, and
let ΩΞΞ′

be the subblocks with labels Ξ,Ξ′ = F,B, and let input and output
vectors be WΞ′

in and WΞ
out, respectively. These are related by

WΞ
out = ΩΞΞ′

WΞ′

in /N
(
ΩΞΞ′

,WΞ′

in

)
, (24)

where N is a normalization factor. Note that all the input probability current
is presumed to be allocated to the subset of Ξ-type channels, and in the same
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fine-grained proportion that is governed by the input and by the matrix Ω. In
order to conserve probability current we must have

N
(
ΩΞΞ′

,WΞ′

in

)
= R̄ΞΩΞΞ′

WΞ′

in /R̄Ξ′
WΞ′

in . (25)

Then a detection in the νth F -type coarse-grained channel entails the following
mapping of XF into Y F :

Y F = MFF
ν

(
XF

)
=def IFF

ν XF /N
(
IFF
ν , XF

)
. (26)

Similarly, a detection in the νth B-type channel entails the following mapping:

XB = MBB
ν

(
Y B

)
=def IBB

ν Y B/N
(
IBB
ν , Y B

)
. (27)

We now specify the set of possible scenarios (i.e., the sample space) afforded
by the above-described system (cf. Fig. 1), and assign a transition matrix to each
scenario. The physical system’s trajectory is taken to be continuous, so that in
progressing from an input to an output channel, a sequence of measurements of
F and B type can be assigned; we need not consider, for example, two successive
F -type measurements in the sample space. In particular, we have for UF to V F

transitions the possible sequences

UF →MFF
ν0
→ V F ,

UF →MFF
ν0
→MBB

ν1′ →MFF
ν1
→ V F ,

etc., (28)

where the “etc.” stands for two, three, and so on, times around the feedback
loop. For UF to UB transitions we have the sequences

UF → UB ,

UF →MFF
ν0
→MBB

ν0′ → UB ,

UF →MFF
ν0
→MBB

ν′
0
→MFF

ν1
→MBB

ν1′ → UB ,

etc. (29)

For V B to V F transitions we have

V B → V F ,

V B →MBB
ν0′ →MFF

ν0
→ V F ,

V B →MBB
ν0′ →MFF

ν0
→MBB

ν1′ →MFF
ν1
→ V F ,

etc., (30)

and for V B to UB the sequences

V B →MBB
ν0′ → UB ,

V B →MBB
ν0′ →MFF

ν1
→MBB

ν′
1
→ UB ,

etc. (31)
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We assume that both the νF and, separately, the νB coarse-grained chan-
nels cover a large number of adjacent, but nonoverlapping, time windows, and
that each passage through the apparatuses A and C takes a substantial positive
amount of time, such that in practice it is possible to take an originally un-
ordered set of measurements and infer the physical sequence of coarse grains at
which the system trajectory crossed the measuring apparatus M . It is, therefore,
possible to assign to each set of measured data uniquely to one of the processes
listed in (28)–(31). (We shall consider below the case that this sequencing of the
measured data is not feasible.) This construction entails the result that most of
the possible sequences of measurements in (28)–(31) will have zero probability
of occurring: in the third line of (29), for example, if the time interval associated
with MFF

ν1
is the same, or earlier than, the time interval associated with MBB

ν′
0

,
the probability of this sequence occurring is zero. These zero probabilities are
built into the dynamics of the system by the matrices A and C, and need not
be invoked as separate hypotheses.

We also assume that the matrices AFB and/or CBF have sufficiently small
elements such that the probability that the system undergoes more than a mod-
erate number of feedback loops is small, that is, that the sums in (17a) and (17b)
converge rapidly.

Let us describe in detail a nontrivial example, from which one can infer a
rule of calculation for any of the scenarios listed or implied in (28)–(31). Let us
calculate the conditional probability that a trajectory enters, occasions a chosen
sequence of exactly four measurements, and exits, as in the third line of (29);
the trajectory is presumed to cross MFF ,MBB ,MFF ,MBB in the sequence of
coarse-grained windows labeled ν0, ν0′ , ν1, ν1′ , respectively. We then have ten
stages connected by nine processes, defined recursively as follows:

symbol/stage definition

UF input (32a)

XF
0 AFF UF /N

(
AFF , UF

)
(32b)

Y F
0 IFF

ν0
XF

0 /N
(
IFF
ν0

, XF
0

)
(32c)

Y B
0′ CBF Y F

0 /N(CBF , Y F
0

)
(32d)

XB
0′ IBB

ν0′ Y B
0′ /N(IBB

ν0′ , Y B
0′

)
(32e)

XF
1 AFBXB

0′ /N
(
AFB , XB

0′

)
(32f)

Y F
1 IFF

ν1
XF

1 /N(IFF
ν1

, XF
1

)
(32g)

Y B
1′ CBF Y F

1 /N
(
CBF , Y F

1

)
(32h)

XB
1′ IBB

ν1′ Y B
1′ /N(IBB

ν1′ , Y B
1′

)
(32i)

UB
1

(
ν1′ , ν1, ν0′ , ν0;UF

)
ABBXB

1′ /N
(
ABB , XB

1′

)
. (32j)

(The first four arguments of UB
1 signify the prescribed measurement sequence

in order from right to left; the subscript 1 means that the trajectory traverses
exactly one complete feedback loop in getting from UF to UB .) Should any one
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of the above-computed rhs’s—apart from the normalization factors—be zero,
we stop the computation and say that the given scenario cannot happen, that
is, it is impossible for the system trajectory to enter at UF , give rise to the
specified sequence of measured values, and exit at UB with nonzero current.
For each specified sequence of coarse-grained measurements, therefore, we have
a well-defined output: if the sequence is not a possible process we put UB = 0,
and if the sequence is possible, we obtain an output with the same normalization
as the input,

R̄BUB
1

(
ν1′ , ν1, ν0′ , ν0;UF

)
= R̄F UF . (33)

The output UB in (32j) is a conditional probability, that is, given the input
vector UF and given the sequence of four measurements, it describes the dis-
tribution of fine-grained probabilities of outcomes UB . We shall now propose
how to determine the probabilities for the fine-grained transitions UF → UB

of (32), such that the sequence of measurements is not preassigned but is in a
sense part of the output: that is, what is the probability, with input UF as the
only “given”, that the outcome comprises exactly the sequence of measurements
of (32) followed by the trajectory exiting in one of the fine-grained channels of
UB? Our claim is that the result is the product of the UB of (32j) with the
nine normalization factors of the rhs’s of (32b)–(32j), that is,

UB
1 [ν1′ , ν1, ν0′ , ν0]

(
UF

)
= N

(
AFF , UF

)
. . . N

(
ABB , X1′

)
× UB

1

(
ν1′ , ν1, ν0′ , ν0;UF

)
(34a)

= ABBIBB
ν1′ CBF IFF

ν1
AFBIBB

ν0′ CBF IFF
ν0

AFF UF .

(34b)

We emphasize that, in (34), the notation implies that the output on the lhs is
not conditioned on the sequence of measurements, but treats that sequence as
part of the output information that is subject to chance. We argue in favor
of (34a) as follows: The given sequence of measurements, together with the
input

(
UF

)
and output

(
UB

)
modes, allow us to infer the unique sequence of

encounters of the system trajectory with the apparatuses A, M , and C, as in
(32). We know, therefore, that in the first passage through A (in (32b)) the
transitions entailed by AFF , and not those of ABF , occurred. The minimal
assumption is that the components of the new vector X̃F

0 have the same ratios
to one another as they would have in the absence of this knowledge, but that
the vector’s components are each enhanced by a common factor such that the
net output current is equal to that of the input; the partial output current
without the above, or any, information as to how the input current was diverted
by A, is simply X̃F

0

(
UF

)
= AFF UF with no multiplying factor. A similar

argument applies to the steps (32d), (32f), (32h), and (32j). With respect to
trajectory’s first passage across a measuring device in (32c), the probability
that the device M will register the coarse grain ν0 is, by the usual rule for
conditional probabilities, just the ratio given by N

(
IFF
ν0

, X̃F
0

)
; the distribution

of output over the complete set of fine-grained F -type channels is therefore
Y F [ν0]

(
UF

)
= IFF

ν0
X̃F

0 , with no multiplying factor. A similar argument obtains
for (32e), (32g), and (32i). Therefore, (34) is established.
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We note that

IFF =
νF∑
ν=1

IFF
ν , (35a)

IBB =
νB∑
ν=1

IBB
ν . (35b)

Therefore, we have

UB
1

(
UF

)
=def

νF∑
ν0=1

νB∑
ν0′=1

νF∑
ν1=1

νB∑
ν1′=1

UB
1 [ν1′ , ν1, ν0′ , ν0]

(
UF

)
(36a)

= ABBCBF AFBCBF AFF UF , (36b)

where the last rhs is just the probability distribution in UB starting with UF

that is predicted with exactly one feedback loop, and with no detailed coarse-
grained measurements having been made, i.e., MFF = IFF and MBB = IBB .
(More precisely, following the interpretation of Lüders [15], we make a measure-
ment of just the unit operator IFF or IBB on passage of the system trajectory
through the device M .) This result corresponds to a term in the series expan-
sion of the second summand on the rhs of (16c). If we sum over all possible
continuous paths and all possible measurement outcomes in the transition from
UF to UB , we recover the whole rhs of (16c), and similarly for the other blocks
of (16). That is, the overall outcome when no measurements are made, as in
(16), can be constructed from an ensemble of results of detailed measurements
on the system.

We now consider that, in passing from a UF channel to a UB channel, the
trajectory crosses M twice in the F direction, with registered values ν0, ν1, and
twice in the B direction with registered values ν0′ , ν1′ , but such that it is not
possible to infer from these data in which order the respective pairs of F -type
and B-type crossings occurred along the trajectory. In particular, the system
can pass through the same coarse grain twice (ν1 = ν0 or ν1′ = ν0′). The total
number of possible processes is

number =
(
νF

)2(
νB

)2
. (37)

We characterize sets of data in the following four ways: (i) ν1 = ν0 and ν1′ = ν0′ ,
(ii) ν1 = ν0 and ν1′ 6= ν0′ , (iii) ν1 6= ν0 and ν1′ = ν0′ , and (iv) ν1 6= ν0 and
ν1′ 6= ν0′ . The unordered sequences have (i) one, (ii) two, (iii) two, and (iv) four
ordered ways to be realized; we must sum over probabilities for the respective
distinct ordered processes in order to infer the net probability for an unorderable
sequence of measured coarse-grain values to be detected. Given only that the
process UB ← UF has occurred with two crossings each of MFF and MBB ,
the probability that this outcome occurs but no detailed measurements are
made on the state of the system at a crossing can still be obtained by summing
probabilities over the disjoint subsets of unordered measurements.

12



4 Discussion

The principle of evaluating conditional probabilities describes the effect of a
collapse of a probability distribution. In fact, let S be an index set with elements
ζ ∈ S. Let S1 and S2 be nonempty subsets of S. Let p(ζ) be a probability
distribution such that 0 ≤ p(ζ) ≤ 1, and∑

ζ∈S

p(ζ) = 1, (38a)

∑
ζ∈S1

p(ζ) = P1, (38b)

∑
ζ∈S2

p(ζ) = P2 6= 0. (38c)

Now suppose that it be given that S2 is “true”, in that we now take as input
information the circumstance that p(ζ) = 0 for ζ in the complement of S2 in S.
Then we infer a collapsed probability distribution

p(ζ|S2) =def

{
p(ζ)/P2, if ζ ∈ S2,
0, otherwise.

(39)

We obtain the usual conditional probability law

P (S1|S2) =
∑

ζ∈S1∩S2

p(ζ|S2) = P (S1 ∩ S2)/P2, (40)

in an obvious notation. The probabilities p(ζ) and p(ζ|S2) can also be described
as the distributions before and after the limiting case of a non-interventional
measurement on the system, respectively.

Let us now study the case that there are no intermediate measurements per-
formed in the system described in Fig. 1, i.e., MFF = IFF and MBB = IBB .
Let us also take nF = 2 and nB = 1, and label the F -type channels with
subscripts 1 and 2. We shall analyze a probabilistic version of a grandfather
paradox ([18], passim), and show that in this context of classical probability
flows, without the destructive interference that can be provided by quantum
mechanics, a feedback loop is incapable of decreasing the F to F survival prob-
ability of a state or channel to a lower value than it would have if the feedback
were absent. Let us take

A =

1 0 α
0 1 β
0 0 1− α− β

 , (41a)

C =

1− γ 0 0
0 1 0
γ 0 1

 , (41b)

(41c)
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where 0 ≤ α, β, (1− α− β), γ ≤ 1 and αγ < 1. According to (13) we have

LFF =
[

1/(1− αγ) 0
βγ/(1− αγ) 1

]
, (42a)

LBB = 1/(1− αγ), (42b)

so that

SFF =
[
(1− γ)/(1− αγ) 0

βγ/(1− αγ) 1

]
, (43a)

SBF =
[
γ(1− α− β)/(1− αγ) 0

]
. (43b)

Given that the inputs are (UF )1 = 1, (UF )2 = 0, and V B = 0, the outputs
V F and UB are given by the first columns of SFF and SBF . We consider γ to
stand for the strength of a signal sent backwards from the apparatus C, and
the (UF )1 → (V F )1 transmission to be adjusted by the feedback parameter α.
When α = 0 the feedback loop is open. As α increases from zero to one, the
output signal

(V F )1 = (1− γ)/(1− αγ) (44)

always increases.
It is plausible, therefore, to infer that a nonzero feedback loop in classical

probability can only increase the survival probability of the classical state of
interest, here the first component of the F-type state vector, above its value when
the feedback loop is zeroed. We infer that only quantum-mechanical feedback
will have the capability of diminishing the survival probability of a physical state
within a feedback sysyem of the type of Fig. 1. Two recent online preprints
([19], [20], and references given therein) study time travel from the viewpoint
of conventional quantum mechanics. I believe that the proper framework for
analysis of quantum-mechanical time-travel phenomena is a quantum analog of
the classical system described in the present paper, for which the basic dynamics
is described in [2]; the task of analysis of quantum-mechanical feedback and
measurement within the formalism of [2] remains to be accomplished.
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